
1

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name
Object programming [S1SI1E>POB]

Course
Field of study
Artificial Intelligence

Year/Semester
2/3

Area of study (specialization)
–

Profile of study
general academic

Level of study
first-cycle

Course offered in
english

Form of study
full-time

Requirements
compulsory

Number of hours
Lecture
15

Laboratory classes
30

Other (e.g. online)
0

Tutorials
0

Projects/seminars
0

Number of credit points
4,00

Coordinators
dr hab. inż. Dariusz Brzeziński prof. PP
dariusz.brzezinski@put.poznan.pl

Lecturers

Prerequisites
The student should have basic knowledge of algorithmics and data structures. Students are also expected 
to be capable of solving basic programming problems, as well as writing, testing, and modyfying existing 
code. The student should also be capable of finding information on his own and be willing to work as part of 
a team. Finally, it is expected that the student resembles an attitude of honesty, responsibility, 
perseverence, creativity, and that of respect for other people.

Course objective
The goal of the course is to teach students how to model and create reusable, easily-maintainable 
software, by using tools provided by object-oriented programming languages. Moreover, the students will 
learn how to create and use custom data types, how to model software systems based on clean code 
principles, and how to communicate their work to other programmers.

Course-related learning outcomes
Knowledge:
1. The student has basic, theoretically grounded knowledge from the fields of programming languages,
programming paradigms, and software engineering.



2

2. Has basic knowledge of the processes and life cycles that occur in software systems.

Skills:
1. The student has basic skills concerning the assessment of the computational complexity of algorithms,
programming with popular languages, and using operating systems.
2. Can design (following a pre-defined specification) and create an IT system by first selecting and then
using the available methods, techniques and computer tools, in particular by using object-oriented
programming languages.
3. Can adapt existing algorithms, as well as formulate and implement novel algorithms, by using at least
one software development tool.

Social competences:
1. The student understands that programming languages, programming paradigms, and software
engineering best practices are part of an ongoing field of research, and that one must keep learning to
be up to date with the state-of-the-art.
2. Knows the impact that programming paradigms (including object-oriented programming) can have on
solving practical tasks in companies, and its potential effect on entire societies.

Methods for verifying learning outcomes and assessment criteria
Learning outcomes presented above are verified as follows:
Learning outcomes presented above are verified as follows:
Lecture: a written test involving short answer questions, simple programming assignments, modeling
assignments. At least 50% of points are required to pass.
Labs: an evaluation based on two programming projects.

Programme content
Lecture:
1. What is object(-oriented) programming and when to use it. Object-oriented versus other
programming paradigms. Basic properties of object-oriented programming languages.
2. Object analysis. Object-oriented modeling through UML class diagrams: inheritance,
implementaction, aggregation, composition, association. Other UML diagrams.
3. SOLID, the five object-oriented design principles: (S)ingle-responsibility, (O)pen-closed, (L)iskov
substitution, (I)nterface segregation, (D)ependency inversion.
4. Inheritance, abstract classes, generic types: implementations in different languages and use cases.
5. Selected software design patterns with examples in object-oriented programming languages.
6. Extensions to object-oriented programming languages: reflection, anonymous types, lambda
expressions, covariance and countervariance, asynchronous programming, auto and dynamic typing,
declarative programming.
7. Contract-based programming.
8. Aspect-based programming and future directions.
Laboratory:
1. Introductory lab: object-oriented programming principles, simple UML diagrams.
2. C++ - pointers, classes, inheritance, abstraction, and polymorphism.
3. C++ - operators, parent classes, friends.
4. C++ - templates, promisses, excpetions.
5. Introduction to Java.
6. Inheritance in Java.
7. Collections.
8. Programming graphical user interfaces (Swing and JavaFX).
9. Threads and concurrency control.
10. Input/output streams and serialization.
11. Exceptions and debugging.
12. Generic types in Java.
13. Extensions to object-oriented programming languages (Java, C++, C#).
14. Profilers and code optimization.
15. Project evaluations.

Teaching methods



3

Lecture: multimedia presentations, whiteboard examples, brainstorming.
Lab: multimedia presentations, discussions, whiteboard examples, programming assignments,
teamwork.

Bibliography
Basic
Thinking in Java, Bruce Eckel, Pearson, 2006
Clean Code: A Handbook for Beginners to Learn How to Become a Better Programmer, Robert C. Martin,
Independently published, 2019
C++ Programming Language, Bjarne Stroustrup, Addison-Wesley Professional, 2013
Additional
The Agile Samurai. How Agile Masters Deliver Great Software, Jonathan Rasmusson, Pragmatic
Programmers, 2017

Breakdown of average student's workload

Hours ECTS

Total workload 100 4,00

Classes requiring direct contact with the teacher 45 2,00

Student's own work (literature studies, preparation for laboratory classes/
tutorials, preparation for tests/exam, project preparation)

55 2,00


